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Abstract

In CSL’99 Roversi pointed out that the Turing machine encoding of Girard’s seminal paper ”Light
Linear Logic” has a flaw. Moreover he presented a working version of the encoding in Light Affine
Logic, but not in Light Linear Logic. In this paper we present a working version of the encoding
in Light Linear Logic. The idea of the encoding is based on a remark of Girard’s tutorial paper on
Linear Logic. The encoding is also an example which shows usefulness of additive connectives.
Moreover we also consider a nondeterministic extension of Light Linear Logic. We show that the
extended system is NP-complete in the same meaning as P-completeness of Light Linear Logic.
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1 Introduction

In [Rov99], Roversi pointed out that the Turing machine encoding of Girard’s seminal
paper [Gir98] has a flaw. The flaw is due to how to encode configurations of Turing
machines: Girard chooses listP ® listP ® bool? as the type of the configurations,
where the first argument listP represents the left parts of tapes, the second argument
listP the right parts, and the third argument bool? states. But it is impossible to
communicate data between the first and the second in this type: the communication
is needed in transitions of configurations. Roversi changed the type of configurations
in order to make the communication possible and showed that an encoding of Turing
machines based on the type works in Light Affine Logic, which is Intuitionistic Light
Linear Logic with unconstrained weakening and without additives. But he did not
sufficiently discuss whether his encoding works in Light Linear Logic.

In this paper, we show an encoding of Turing machines in Light Linear Logic. This
completes P-time completeness of Light Linear Logic with Girard’s Theorem [Gir98]
that states computations on proof nets with fixed depth in Light Linear Logic belong
to class P. The idea of the encoding is based on a remark of Girard’s tutorial paper
on Linear Logic [Gir95):

Affine linear logic is the system of linear logic enriched (?) with weakening.
There is no much use for this system since the affine implication between A
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and B can be faithfully mimicked by 1&A4 —o B.

Roversi’s encoding exploits weakening to discard some information after applications
of iterations. Our encoding uses A&1 as type of data that may be discarded. On
the other hand Light Linear Logic retains principle !A®!B —ol(A&B). Because of
this principle, we can obtain a proof of 11®!A —o!B or 11®!4 —0 §B from a proof of
1& A —o B in Light Linear Logic. The obtained proof behaves like a function from !A
to !B or §B, not that of 1(1&A4): in other words, outside boxes we can hide additive
connectives which are inside boxes. That is a reason why the encoding works in Light
Linear Logic.

On the other hand we also try to simplify lazy cut elimination procedure of Light
Linear Logic in [Gir98]. The attempt is based on the notion of chains of @®-links.
The presentation of Girard’s Light Linear Logic [Gir98] by sequent calculus has the
comma delimiter, which implicitly denotes the @-connective. The comma delimiter
also appears in Girard’s proof nets for Light Linear Logic. The introduction of two
expressions for the same object complicates the presentation of Light Linear Logic.
We try to exclude the comma delimiter from our proof nets.

Next, we consider a nondeterministic extension of the Light Linear Logic system.
Our approach is to introduce a self-dual additive connective. The approach is also
discussed in a recently appeared paper [Mau(3]. But the approach was known to us
seven years ago [Maf96]. Moreover, our approach is different from that of [Mau03],
because we directly use the self-dual additive connective, not SUM rule in [Manu(3]
and we use a polymorphic encoding of nondeterminism. In particular, our approach
does not bother us about commutative reduction between nondeterministic rule and
other rules unlike [Man03].

2 The System

In this section, we define a simplified version of the system of Light Linear Logic (for
short LLL) [Gir98]. First we present the formulas in the LLL system. These formulas
(F) are inductively constructed from literals (T') and logical connectives:

T=a|ply|...la"[BH]y]...
F=T|1|L|F®F|FP9F|F&F|F & F|\F|?F |$F |Va.F | 3o.F.

We say unary connective $ is neutral. Girard [Gir98 used the symbol § for the
connective. But we use $ since this symbol is an ascii character.
Negations of formulas are defined as follows:

o ()t =qer o, (@)t =ger @

o1l =g L, 1t =41

o (A® B)*t =4t AL9BL, (A9B)*: =4t AT ® B+

o (A&B)! =gef At @ B, (A® B)* =gt A*&B*

o (Va.A)t =gor Ja. AL, (Fa. A)E =4ep Vo AL

.
(

LA): AL, (24)E =qul AL
o ($A)F =qcr $A+



We also define linear implication —o in terms of negation and ’@-connective:
A —0 B =def AL?B

In this paper we do not present sequent calculus for Light Linear Logic. Instead
of that, we present a subclass of Girard’s proof nets for Light Linear Logic, simple
proof nets (precisely, simple proof nets can be mapped into a subclass of Girard’s
proof nets). Although there is a proof net that is not simple in the sense of [Gir96],
simple proof nets are sufficient for our purpose, encoding of Turing machines, because
nonsimple proof nets never occur in our encoding. Moreover it is possible to translate
proof nets in the sense of [Gir96] into simple proof nets although simple proof nets
are generally more redundant than nonsimple proof nets.

A simple proof net consists of formulas and links. Figure [l shows the links in LLL:

Fg(Ai,...,Ap) represents a formula that is generated from formulas A,,..., A, by
using @-connective and is called general &-formula. Sg(Ai,. .., Ap) represents a list
of several general @-formulas that are generated from Ay, ..., 4,.
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F1G. 1. the links in the LLL system

Figure B shows simple proof nets are defined inductively. The formulas and links in
simple proof nets have weights. These weights are generated from eigenweights that
are associated with &-links occurring in simple proof nets by using boolean product
operator ’-’. If a formula or a link has the weight 1, then we omit the weight.

Moreover we must take care of the case of &-links. For example from two simple
proof nets of Figure Bl we can construct a simple proof net with the conclusions
?AL, 7B+ 1A&$ A of Figure @l As shown in the figure, the context-formulas must be
shared.



n is a simple proof net.
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F1G. 2. the definition of simple proof nets
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FiG. 3. two simple proof nets
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F1G. 4. An example of constructions of simple proof nets with &-links

Moreover sharing of context-formulas may be complex. For example, from two
simple proof nets of Figure [l we can construct a simple proof net with

1A&$D, 7B+, 2C*, 7D+, $C®!A.
But it is difficult to write down this on a plane in a concise way. So we omit this.
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Fi1G. 5. more two simple proof nets

Figure [l shows an example that is a proof net in the sense of [Gir96]. The proof net
satisfies the correctness condition of [Gir96]. But it is not simple. However we can
easily construct a simple proof net that has the same conclusions as the proof net.
For example a simple proof net corresponding to that of Figure @l is that of Figure [d
But such a simple proof net is not uniquely determined. For instance, Figure
shows another simple proof net corresponding to that of Figure Bl Besides, in the
introduction rules of !-box and $-box when we replace @-occurrences of generalized
@-formulas by comma delimiters, we can easily find that any modified simple proof
net in this manner is a proof net of Girard by induction on derivations of simple proof
nets.

Figure @ shows the rewrite rules in the LLL system except for contraction, neutral,
I-1, and !-$ rewrite rules. Fusion and c-w rewrite rules first appeared in [DK97]. The



(PL)

[(J8) (=PL) (pL)
1 AL

= E\/ A Aﬁ' A
EGA AlesB AlolC

(A'e B)® (A'® C) D Dty

\/ \&/Dl(pu
(A*'»B)® (A'e C)eD  D'¥ D'<p>

F1G. 6. An example of non-simple proof nets
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F1G. 7. A simple proof net corresponding to the above non-simple net
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F1G. 8. Another simple proof net corresponding to the above non-simple net

other rewrite rules in Figure [l are standard in Linear Logic. Figure [l shows neutral
rewrite rule. Figure [[1 shows contraction rewrite rule, where $Y, $Y’, !Z and !Z’
represent sequences of proof nets and 'w’ a sequence of weakening links. The length
of $Y must be the same as that of $Y’ and the length of !Z the same as that of !Z’.
Let Y =Y1,..., Y, SY' = Y/,....Y. . $Z = Z1,...,Zy, $Z' = Z!,...,Z". Bach
Y; (1 <i<m)and Zy (1 < ¢ <mn)must have the following conditions:

1. The conditions on Zj.
Each Z; must have the form of the upper proof net of Figure [[A or that of Fig-



ure In both proof nets, the first j arguments of Gg(Ay,..., A,) are all A+
occurrences and all the links from A; to Gg(41,...,A,) are @-links that have
weight 1 (therefore all the formulas from A; to Gg(A;,...,A,) are not conclu-
sions of two links. We call such a sequence of @-links @-chain). In the former case
A; is equal to At (in this case i < j) and in the latter case A; not (in this case
i > j). We call the former &-chain non-fake and the latter fake.
2. The conditions on Y;.

Each Y; must have the form of the upper proof net of Figure[[@or that of Figure 3
In the former case there are some non-fake chains, but in the latter case all the
@-chains are fake.

In other words each proof net in $Y and !Z must have at least one @®-chain. Moreover
each Y/ (1 <i <m) and Z, (1 < ¢ < n) must have the following forms according to
Y; and Z,:

1. The case where the PLU S-chain of Z, is non-fake:
Then Z; must be the lower proof net of Figure

2. The case where the ®-chain of Z; is fake:
Then Z; must be the lower proof net of Figure

3. The case where some @-chains of Y; are non-fake:
Then Y, must be the lower proof net of Figure[[dl The notation ?B, , of the right
side means that the weakening link with conclusion 7B, is missing in the proof
net.

4. The case where all the @-chains of Y; are fake:
Then Y, must be the lower proof net of Figure [H

Note that neither the left hand side nor the right hand side of Figure [l is a simple
proof net. If we find a pattern of the left hand side of Figure [ in a simple proof net,
we can apply the contraction rule to the simple proof net and replace the pattern by
an appropriate instantiation of the right hand side of Figure [l

Let us recall lazy cut elimination in [Gir96].

DEFINITION 2.1
Let L be a Cut-link in an additive proof net. When two premises of L are A and At
L is ready if

1. L has the weight 1;
2. Both A and At are the conclusion of exactly one link.

For example, in Figure[[8 the right cut is ready, but the left not. After the right cut
is rewritten, the left become ready.

Lazy cut elimination is a reduction procedure in which only ready cuts are redexes
(of course, in the contraction rewrite rule the above mentioned conditions must be
satisfied). The definition also applies to our rewrite rules. So we use the definition.
By —1azy Wwe denote one step reduction of lazy cut elimination.

THEOREM 2.2
Let ©1 be a simple proof net. If ©1 —1,,y, ©2, then O, is also a simple proof net.

PrOOF. Induction on the construction of simple proof net ©; and an easy argument
on permutations of links.
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F1G. 9. the rewrite rules in the LLL system

Next, we relate lazy cut elimination of simple proof nets with that of Girard’s proof
nets.
PROPOSITION 2.3
One step of lazy cut elimination of simple proof nets can be simulated by several steps
of that of Girard’s proof nets.

We do not present the proof because in order to prove this we must rephrase the full
details of Girard’s proof nets. We just show the difference between them. The left
cut of Figure [ is a redex of Girard’s lazy cut elimination, but not of that of simple
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F1G. 13. The case where Z, has the fake ®-chain

proof nets. In Girard’s lazy cut elimination, Figure [[[ can be reduced to Figure
That does not happen to simple proof nets. Instead of that, in lazy cut elimination
of simple proof nets the right cut of Figure [ is ready and Figure [ can be reduced
to Figure M Then the residual left cut of Figure M@ become ready. In lazy cut
elimination of simple proof nets, Figure [[d is reduced to Figure 20 by one-step. But
in Girard’s lazy cut elimination this reduction takes two-steps. For example we need
an intermediate proof net like Figure 211

It is obvious that there is a proof net that is reduced to a cut-free form in Girard’s
lazy cut elimination, but not in lazy cut elimination of simple proof nets. Hence, in
this sense, our lazy cut elimination is weaker than that of Girard’s proof nets. But,
when we execute Theorem B2 that is, compute polynomial bounded functions on
binary integers in proof nets, our lazy cut eliminations and Girard’s always return
the same result, since this is due to the following Girard’s theorem and our binary
integer encoding in simple proof nets does not have any &-occurrences.

THEOREM 2.4 ([Gir96])
Let © be a proof-net whose conclusions do not contain the connective & and 3X. and
without ready cut; then © is cut-free.

3 A Turing Machine Encoding

Let M be a Turing machine and k£ be the number of the states of M. Without loss
of generality, we can assume that only 0, 1, and * occur in the tape of M, where * is
the blank symbol of M.
We use
k

bool® =ge VX. X &(- - &(X&X)---) o X

for the type of the states of M. In contrast to bool¥ in [Gir98], boolX in this paper
does not include the neutral connective $. Figure shows an example of boolk
proofs. After 0 or 1 @;-link, @o-links follow k — 1 or 4 — 1 times.

10



0% YD, s D¢, Wagg e Tige,

_‘O A: fo St i _Ovez_.:ﬁﬁ _U.....HUVGH_ L= TR Tig

>

0% Lo YATIIe ¢ WUGE eeeenens 19, ABNFG, ooneeenee TV ._.<w ......... ._.<m
(Hug e Tug _._.<......_.<v®tI... (ug g ”_.<......_.<v®f Av_md\...,Tim<.._.<:...._.<v®v_o.: Aam<....ﬂ<.._.<:...._.<v®HO
ureyor- @ ureyo- @ ueyo- @ ureyo- @ _ |
o (PO )@ Ty @T) wag tig R R ='A$
i > i
X09-$

11

F1G. 14. The case where Y; has non-fake ®-chains
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Fi1G. 17: an example that is a redex of Girard’ proof nets but not that of simple proof
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Fi1G. 19. an example that is a redex of simple proof nets
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F1G. 22. an example of bool® proofs
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In addition we use
config =gt VX.I(X —0 X) —o!(X -0 X) —o!(X -0 X) -0 $(X -0 X (X ®X)@bool¥)

for the type of configurations of M. The type represents the current configuration of
running M, that is, the 3-tuple of the left part of the current tape, the right part, and
the current state. Figure B3 shows an example of config proofs. In the A-notation, the
example is Afo. Af1. A Az Y. (fo(f1(2)), f«(f1(fo(y))),b), where b is a bool*-value.
Hence the example denotes configuration (10, *10, b).

A 1
A\Q{I: boolkj

\ (A®A ®boolk

A
* l U N T O P G o l‘ Mboolk)

A 4
ANA ANAL ANAL ANGAL ANA A-0A=6((A®A )@boolX)
—’?(AM—\)L ’?(AM)J' ?(AM)l ?(AM)L KAM P $(A-0A-0((A®A)@bool) __|

Aadoa)  1(A-0A)-0S(A=0A-0(A®A)@boolK)

$-box

AAT0A) 1(A-0 A)-0!(A=0A)-0%(A-0A-0((A®A )®bool k)

1(A-0 A)>OTTA=0 A)—0!(A-0 A)-0$(A—0A—-0 (A®A ) @bool X))

v
config

Fi1G. 23. an example of config proofs

For shorthand, we use id 4 to represent A —o A. Then we write down the transition
function of M in Light Linear Logic, which is the main task of the paper. Figure
shows our encoding of the transition function, where trpl, is an abbreviation of
(bool?&1) ® ((ida&1) ® A). The formula trpl, is fed to the second-order variable
that is bound by the V-link in an input proof of config.

Three proof nets apply_step(()b°°14), apply_step(1b°°14), and apply_step(x
in Figure 24 are made up by giving a bool* proof (0, 1, or *) to step of Figure 23 (see
Figure Z0), where Ob°°14, 1b°°14, and #P°°!* are different normal proof net of bool?.
Ob°°l4, 1b°°147 and xPool” represent the symbols 0, 1, and * on the tape of M. The
main purpose of these apply_step(®b°°l4) is to decompose the left or right part of the
tape of a given configuration into data with type trpl, = (bool*&1)® ((ida&1)® A),
where both bool*&1 and id 4 &1 represent the top symbol of the left or right part of
the tape and A represents the rest except for the top symbol. The principle by which
the encoding works is the same as that used in writing down the predecessor function.
There is just one proof net of bool? that are different from these three. Let the proof
net be emptyP°°!". The proof net emp‘cybo"14 do not have any corresponding symbol
on the tape of M: the proof net is used in apply_base of Figure Z8 in order to make
our encoding easy.

The proof net main$ in the $-box in Figure B4 is shown in Figure

Proof net apply_base in Figure 7 are made up by giving a bool* proof empty to
base of Figure B8 where as we mentioned before, emptyb""14 is a normal proof net of

b0014)
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Fic. 25. step function

1-box

(PL)  (=pL)
bool idy&1  trpl y~otrpl 5
; > _ 1

L STEp Jbool &1 (idp & 1)>0trpl y—0trpl 5
(bool % 1)-0(id & 1) ‘W"Otrp' ATOUPl A"
idA® L cut trpl y=otrpl
- ?J_?(A—oA)l 1(trpl p—0trpl 4) —

Fic. 26. apply_step

bool*, which is different from Ob°°14, 1b°°14, and #P°°!* The proof net apply_base
is used in order to feed an initial value to apply_step(®b°°14).

Proof net extract in Figuredis shown in FigureZ9 The intention of extract was
to transform an input of the net ((by, (f1,a1)), ({b2, (f2,az2)), bk)) with type (bool*&1)®
((ida&l) ® A) ® ((bool*&1) ® ((ida&1) ® A) ® bool¥) into ({{(b2, f1),a1),as), bk)
with type (((bool* ® ida) ® A) ® A) ® boolX. The top symbol of the left part of
the current tape must be left with type id 4 since this is used in order to be attached
to the left or right part of the tape of the next configuration. The top symbol of
the right part of the current tape, at which the head of M currently points, must
be left with type bool? since this is used in order to choose one of select functions
(which are defined later). Note that to do this one must use additive connectives and
multiplicative constants.

Proof net comp in Figure 2 is shown in Figure B, where

shift =g, VX.(X ©X) o0 X X —o((X ® X) ® bool¥)

and
row =g shift&(shift& (shift&shift)).

The main purpose of extract is to transform an input of the net (({({(b, f),a1), az2), bk)
with type (((bool*®id4)® A) ® A) @ boolX into the next configuration ((as, a4), bk’)
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1oeiXa

FiG. 27. main$
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(PUA A (p0) €PL)
AXOA (pL)

idag1 A
bool4 & 1 (idy & SA)

A ((bool? g}gm))

N

4 )
bool J‘@J_\W((IdA&l)®A))

(bool % & 1)-8A-0((bool* & DVe((id, & V@A)
apply_base

(b))
bo@ A trpl,i‘
bool4g 1 A—o/trpIAl

L base J \/

(bool4& 1)-0A-otrpl , J (bool 4& 1)=0A-otrpl AJ'
L \/

A Cut

trpl 5

F1G. 28. base function and apply_base

idy L
id}\e!u_ At bool ™ idie, At bool id,
boolHe 1 ((idy& DSA)Y  bool* ey ((idye DSA): bool Tgid, A
(bool? & D&(id & DoA)*  (bool* g D((id, & D@A)* (bool *id, %A A
(((bool* & D@ ((id, & 1) @AN®(bool & D@ ((id, & 1) @A) boolX*  ((bool%®id,)®A)®A bool

(((bool* & D@ ((id, & @A) @ (bool* & D@ ((id, & DSANS bool K)* (bool *id ) @A )®h®/bOO|k

F1G. 29. extract function

with type (A ® A) ® bool¥. Data b with type bool* and bk with type bool* in the
input are used in order to choose one of select functions (which are defined later).

Proof net matrix in Figure Bl is shown in Figure B3 where r{,...,r,_1,7% are
proof nets that have the form of Figure B4l The main purpose of matrix is to retain
k proof nets of the form of Figure B4l Proof nets s1, s2, s3, and s4 in Figure B4l have
the form of Figure BI or Figure We call such proof nets shift functions. Proof
nets that have the form of Figure Bl represent left moves of the head of M. On the
other hand proof nets that have the form of Figure B2 represent right moves of the
head of M.

From what precedes it is obvious that we can encode the transition function of M
into a proof net with conclusions 71, conﬁgj‘, config of Light Linear Logic. By using
the proof net, as shown in Appendix [A] P-time Turing machines can be encoded. In
other terms, we obtain the following theorem:

THEOREM 3.1
Let bint be VX.!(X —0 X) —ol(X -0 X) —-o0$(X —0X). Let M be a Turing machine
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A

L

idacd L idad L idxed 1 row&(--&{

id A-0A~0((A®A)®bool
matrix K J (A—oA)—oA—oA—o((A®A)®boo|k)*
WE Fow) ---) r$ = shift&(shift&l((shift&shift)) shift

S —~ shift & (shift & (shift & shift)=<o shift ™
rowg, (--& (roWg row) --)Zorow*
JAA&(A&(A&A)-OA*
idy
T~
(bool *®1dp) \*
k
(bool *idp)®A)* At A
JAA& (& (A&A)-)OA
(((bool4®idA)®>)\®(*K/
((((b00|4®idA)®A)®A ®bool )t
FiG. 30. comp

A A
M I: boolkj
~_

,!«* (A@A)Bbool
k)

'J._l L J._\/
AT A A A-o((A®A)®bool
N \/L \/ K
A-0A=0((A®A)®bool™)
\/

ATOAT  AToA
8

2>

L L 1
(A-0A)®» 1L (A-0A)®L (A-0A)® L (A-0A)-0A-0A-0((A®A )®bool

4
shift

F1a. 31. an example of shft proofs (left move)

-
ARA bool k

A (Molk

| . /-L- L\/ k
A/ / A~ A-o((A®A)®bool ")
\/ \/L \/ K
-0A=0((A®A)®bool ")

N\ L
ASOA AN A A
Ky

L L L
(A-0A)o 1L (A-0A)®L (A-0AJ® L (A-0A)-0A-0A-0((A®A)@bool

4
shift

F1G. 32. an example of shft proofs (right move)
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Kk

(PL1) (-PL1=PL2--Prk-1) (-PLa-PL2~PLk-1)

I_ rl row _| ............ |_ rk71 I'OWJ I_ rk row J

TOW (-pL1=PL2--~PLk-2)

VI
rowg&, (& (FOW& row) --) (-p 1)

idxd L ida® L idA® L rOW & (-& (rowg row) ---)
Fic. 33. matrix

(=PL1-P12PL3) (-PL1"PL27PL3)

|— ® shiftJ |— > shiftJ

(-PL1PL2)

shift & shift (-p_1-p(2)

shift & (shift & shift) (-py,)

idac L idA® L idA® L shift & (shift & (shift & shift))

F1G. 34. row_net

with time bound of a polynomial with degree k. In Light Linear Logic M can be
represented by a proof net with conclusions L**4, bint™, $¥*3config.
Furthermore, we can strengthen the above theorem as follows:

THEOREM 3.2
Let f be a polynomial-time function with degree k. In Light Linear Logic f can be
represented by a proof net with conclusions 156, bint*, $*5bint.

In order to prove the theorem, we need a proof net that transforms config into
bint. In Appendix [B, we show a proof net that performs the translation.

4 Owur Nondeterministic Extension of the Light Linear Logic
System

In this section we consider a nondeterministic extension of the LLL system called
the NDLLL system. In this extended system we introduce a new self-dual additive
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connective “nondeterministic with” A. Then the formulas of NDLLL are constructed
by adding the following clause to that of LLL:

F = . |FAF

Since A is a self-dual connective, the negation of the formula AAB is defined as
follows:

(] (14AB)L =def 14LABL

The link newly introduced in NDLLL is the form of Figure B3 Proof nets for the
NDLLL system are inductively defined from the rules of Figure Bl and in the middle
of Figure Bil In a simple proof net for NDLLL a unique eigenweight is assigned to
each A-link occurrence in the same manner as that of &-link.

Finally the rewrite rules of NDLLL are that of LLL plus the nondeterministic rewrite
rule of Figure B In the rewrite rule for A any of the two contractums is nondeter-
ministically selected. If the left contractum (resp. the right contractum) of Figure BH
is selected, then all the occurrences of both eigenweights for AAB and A-AB* are
assigned to 1 (resp. 0). In the next section we explain a usage for the A.

A B

AAB
ndwith-link

i \\ X J and \\ Y J are nd-simple proof nets,then
L1 L2
T A ¥ B

\i([w-*PL/ wj \\Y w-p, / Wj is a nd-simple proof net.
L1 A 2 B
M/

AAB

FiG. 35. Our nondeterministic extension of the LLL system
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4.1 A Nondeterministic Turing Machine Encoding

Our usage of A-connective is to use A in proof nets on datatypes like bool =4.f
VX.X&X —o X which use the standard additive connectives & and . As an example,
we consider cut-elimination of Figure Bl where note that the sub-proof net with
conclusion bool —o bool of the right premise of Cut is constructed by using A. From
Figure BA to Figure E the standard lazy cut elimination procedure is performed. In
Figure E the nondeterministic cut elimination procedure defined in previous section
is performed. Figure Elis one choice and Figure B2 the other choice.

(PL1pPL2) (PL1-Pr2) (“PL1PL3) (-PL1-P13)

ALEAL (AAA) W
A& AYRA AA) & (A AAY-TA AA)*

F1G. 36. An example: the starting point

(PL1PL2) (PL-Pr2) (TPL1PL3) (-PL1-P13)

Alaat
2

(Afaab)a(AtAAY) AAA (AAA)E(ALA)
(AAAMAAA) AA) & (A AA>-AA AA)*

F1G. 37. An example: step 1

An encoding of a nondeterministic Turing machine into NDLLL uses the same idea.
The encoding is the same as that of a deterministic Turing machine into LLL except
for comp of Figure Bl The comp proof net is replaced by the nd-comp of Figure E3]
where

ndrow =g (shift Ashift)&((shift Ashift)&((shift Ashift)&(shiftAshift))).
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(PL1PL2) (PL1-Pr2) (ZPLLPL3) (-PL1-P13)

F1G. 38. An example: step 2

(PLapPL2) (PL1-Pr2) (“PL1PL3) (-PL1-PL3)

X" (-pLa)
<L4>
ALLAL

2
(A*AAY) B (AtaAY)

F1G. 39. An example: step 3

(PL2) (-PL2)

L L

NVZ " (pLa)

ALA W
2 ALAAL
ALoAt
foli
A&ATA
F1G. 40. An example: step 4
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\/L
7 cut
A& AT0A

o

Fic. 41. An example: nondeterministic choice 1

il_l L

AJ. AJ.

-0A

A&
blol

F1G. 42. An example: nondeterministic choice 2

The idea is completely the same as that of the above example. The information about
nondeterministic transitions of a nondeterministic Turing machine is stored in a proof

of
k

ndrow& (- - - &(ndrow&ndrow) - - -).

By the completely same manner as Theorem Bl except for nd-comp the following
theorem holds.

THEOREM 4.1

Let M be a nondeterministic Turing machine with time bound of a polynomial with
degree k. In Nondeterministic Light Linear Logic M can be represented by a proof
net with conclusions L*+4, bint, $**3config.

Usually a nondeterministic Turing machine characterizes a language accepted by
the machine. Without loss of generality, we can assume that nondeterministic Turing
machine has two special state symbols yes and no which judge whether a word is
accepted by the machine. Moreover we can prove the following theorem.
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THEOREM 4.2

Let L C {0,1}* be a language whose is accepted by a nondeterministic polynomial-
time Turing machine M with degree k. In Nondeterministic Light Linear Logic the
characterization function of L from {0,1} to {0, 1} can be represented by a proof net
with conclusions L*+5. bint*, $*T*bool.

In order to obtain such a proof net from the proof net with conclusions 1 *+%, bint™*, $**3config
constructed from Theorem Bl at first we construct a proof net which extracts a bool¥
proof from a config proof. Figure Bl shows the proof net. Next we construct a proof
net which maps a bool¥ proof to a bool proof. The specification of proof net is that

1. if a given bool® proof net represents yes, then the return value is a bool proof
net that represents yes;
2. otherwise, the return value is a bool proof net that represents no.

We can easily construct such a proof net.

1\1(01 (1@1) olk
1(1-01) %@@ boolX
@ G{;) 1®)® bool K
™ol

01 -d(1®1) g bool ) boolK

1(1-01)

®®\9>

1(1-o1)

$(1-01-d(1®1)g bool k))l $bool k_|

(1 -00)4G8( 1 ~01 ~d(1®@ 1)@ bool ) *

1(1-01)=0(1-01) —0$(1 -0l -d(1®1)& bool k))*

1(1~01)<61(1 ~01) 0 (1 ~01) ~a8(1 -0l ~d( 1@ )& bool ¥))*

config+

Fia. 44. config2boolk

4.2 Time Bound of Nondeterministic Light Linear Logic

Next we discuss the P-time bound of lazy cut elimination. We define the size of a
link to be the number of the conclusions of the link. Moreover we define the size of a
nd-simple proof net © (denoted by size(O) to be the sum of the sizes of the links in ©.
The depth of © (denoted by depth(0)) is defined to be the maxmal nesting number
of the boxes (I-boxes or $-boxes) in ©. As discussed in [Gir08], size(©) is quadratic
w.r.t the encoded data generated from ©. When O; —j,,y ©2 by nondeterministic
choice, it is obvious that the size of ©5 is strictly less than that of ©;. We suppose
that © —{, = ©', where —j,,  is the reflexive transitive closure of —1a,y. From the
above observatmn and the discussion in [Gir98] on the LLL system, the following
proposition is obvious.
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ProrosITION 4.3
In the NDLLL system, if © —}__ O’ then the size of ©' is bounded by size(O)

2depth(@)
lazy .

It is easy to see that on the above proposition we can lazily reduce © to ©' in a
L . odepth ()
polynomial time w.r.t size(©)

data generated from O.

, because size(©) is quadratic w.r.t the encoded

PROPOSITION 4.4
In the NDLLL system, if © —} _ ©’ then © is reduced to ©' in a polynomial time

lazy
. depth(©)
w.r.t size(©)? :

Let M be a nondeterministic polynomial-time Turing machine with degree k. Then by
Theorem Bl we can construct a nd-simple proof net ©; with conclusions L*+4, bint ™, $++3config.
Then let ©2 be a simple proof net with the conclusion bint representing a binary in-
teger with length n. Then from Proposition EE4] we can see the proof net constructed
by connecting ©; and Oy via Cut-link is lazily and nondeterministically reduced to a

normal form in a polynomial time w.r.t n? .

5 Concluding Remarks

It seems possible that a P-time Turing machine encoding in Light Affine Logic is
mechanically translated into that in Light Linear Logic. A given proof of the P-time
Turing machine encoding in Light Affine Logic, we replace all the formula occurrences
A in the proof by A&1 and then apply an extract function like Figure B9 to the re-
sulting proof. But we did not adopt the method, since the simple transition makes
a too redundant proof in Light Linear Logic. So we made some optimizations. For
example, In [Rov99] VX.X ® X —o X was used as the boolean type. The above men-
tioned translation makes VX.((((X&1)® (X &1))&1) —o(X &1))&1. The study to find
optimal translations seems interesting.

Acknowledgements.  The author thanks Luca Roversi for discussions at his
visit to University of Torino.
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A Our encoding of Turing machines(continued)
k k

— ——
For shorthand, we use !*A to represent !(---!(! 4)---). We also use ?*A =g¢ ?(---7(? A)---) and
k

——
$8A =4qor $(---3(3A)---) In addition, we implicitly assume coercion for L. In other terms, we
assume that by using a proof net with conclusions ?¥1 L ..., ?%r 1 T' we can construct a proof net
with conclusions ?% L, T provided k > ki, ..., kp. This is done by using p proof nets that have the
forms of Figure @H Cut-links, and one contraction-link.
Unlike [Gir98], we do not use int =g0f VX.!(X —0 X) —0 $(X —o X) for our Turing machine encoding;:

F1G. 45. coercion of L

we only use bint =g¢ VX.!I(X —0 X) —o!(X —0 X) -0 $(X —o X) instead of int since we would like to
reduce the number of proof nets appearing in this paper. It is possible to construct a Turing machine
encoding from our transition function encoding by using int. In the following we show three basic
functions for bint: two successor function and addition. Figure @ and Figure Bl show two successor
functions for bint: we call these sucO and sucl respectively. Unlike int, bint has two successor
functions.

Figure shows the analogue in bint to the addition in int: we call the proof net badd. If we

[ I |
AL L

A At A At A
| | A\—/oAl AYoat MA
(A0A)  1(A-0A) Ar-0A) AA=0A) L $(A-0A)t AA-0A)  $(A-0A)

I(A-0A)= T
AASOA) 1(A-0 A)=Z0$(A-0A)
(A-0A)~BI(A-0 A)-0$(A-0A)* me_o”
3 v
bint £ bint
F1G. 46. sucO

regard two inputs proofs of bint of the proof net as two lists which only have 0 and 1, then we can
regard badd as a concatenation function of two inputs.

Figure shows a proof net called bmul. In the figure, empty is a proof net of bint that does not
have exponential-links except for two weakening-links with ?(A —o A)L. Let ©7 be a bint proof that
is supplied to bint® port of bmul and ©3 be a proof net with !bint as one of conclusions that is
supplied to ?bint’ port of bmul. Let £ be the length of ©1. The evaluated result of bmul provided
inputs ©1 and O3 are given, is £ copies of ©2. Let m be the length of ©5. The length of the result
is £ X m. The proof net bmul is analogous to multiplication of int.

The proof net shown in Figure transform a bint proof into a config proof that is a initial
configuration of Turing machines. We call the proof net bint2config. By using bint2config and
transition, our encoding of the transition function of M, we can construct the engine part of Turing
machines shown in Figure Bl But it is not sufficient for a proof of Theorem B} besides we need
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1(A-0 A)MUS(A—0A) "
1(A-0 A0 $(A-0A)
!(A—OA)—O!(A—OA)—O$(A—OA)1 | T(A-0A)-0$(A—0A)
3 |V
bint+ bint
F1G. 47. sucl

[ 1

[ |
At AL AY A

A A
AYoar  AYoat MA

$(A-0A)" $(A-0A):  $(A-0A)

Aa-0A) Aa-oA)

1(A=0A) (A=

’ "
1(A—0A) '(A-0A)GH(A-0A)" I(A-0A) I(A-0A)0$(A-0A)* AATQA)

/ WO$(A_OA)

1(A—0A)~B1(A-0A)-0$(A-0A)" 1(A-0A)>01(A-0A)-0$(A-0A)* 1(A-0A)-0!(A=0A)-0$(A-0A)

|EI 3 |v
bint+ bint+ bint
F1G. 48. badd

L badd J L badd J empty | |
bintL bint* bint bint* bint* bint bint - bint

bint>Gbint bint>Gbint bint™6bint+  bint
2bint+  1(bint—obint) 2bint+ 1(bint—obint)

$(bint—obint )L  $bint
1(bint —obint ) ~o$( bint —obint )+

1(bint —obint ) =0l ( bint —obint )—0$( bint —obint )+
3
2bint+ bint+

F1G. 49. bmul
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constructions for polynomial time bound. To do this, we prepare several proof nets.
The proof net coer? ? of Figure B2 is the bint version of int coercion of [Gir98|. Then p must be

J>—

A
| /M\é/ |:boolkj

At (A®@A)Ebool¢

AVA* At A% ((A®A)@bool)
AYoat AVEA-0((A®A)@boolK)
L $(A-0A)* $(A-0A-0((A®@A)@bool¥)) —

I(A~t0A)  I(A-0A) AA-0A) H(A-0AG

%(A-0A-0((A®A )@boo))
\y"mwl %A—o\ﬁw\—wf\/wom-%-o(mm)@bomk»

1(A—0A)~B1(A-0A)-0$(A-0A)" I(A-0A)<GI(A-0 A)—O!(A—0A)—0$(A—0A—0((A®A)@boolk )

3 v
bint+ config

F1G. 50. bint2config

transition transition bint2config
I_?J_ configt configJ I_?J_ configt configJ bint+  confi J configh  confi
¢} [¢] g
config~6 config config~6 config config=g config"

71 1(config<o config) 721 1(config—o config) $bint*+  g(config-o config)" $config

1(config-o config)~0 config—oconfig)*
T(config-o config)=oT(config—o config) —o $(config—o config)"

3
bint +

F1G. 51. tm_engine

greater than 0. This proof net is used in Figure B4l and Figure B8l The proof net k-contraction of
Figure is also the bint version of int contraction of |Gir98|. This proof net is used in Figure
and Figure B3

The proof net in Figure is used in Figure This is basically £ compositions of bmul. The
bint proof cconst in Figure B4l is a constant that does not depend on the lengths of inputs of Turing
machine M.

The proof net kpolynomial of Figure BH is our polynomial construction with degree k. Let © be a
proof net of bint and ¢ be the length of ©. The evaluated result of kpolynomial provided an input
© is given, is a nest of $-boxes which has an inside proof net of bint with the length cconst X ok,

Finally we obtain our encoding of a Turing machine with polynomial time bound of Figure Bl This
completes our proof of Theorem Bl
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k—-composition—of-multiplications
k

k-contraction ) 2) 28] k1) 2k (bint@(-@(bintgbint )-)* $kbint
k
k
21 bint+ $(bint®(.-@(bintgbint )..)) R 98y 4y k) k¢l ﬁbmnt Yot $kLbint
Cut

Fia. 55. kpolynomial

$-box
$-box

$-box

L TM_engine J
2 bintL  $bintL gconfig

i $bintL  $?bintL $2config
: }k+1

L k-polynomial J :
21 bint+ $k+1bint 23§ bint L gk+2 pint L gk*2config

Cut
L coer k¥2.0
?k+2) bintL $k*2bint
(bint @bint )+ cut
L 2-contraction
21 bintt $(bintgbint ) oki2y KB oked $(bint @bint )+ $k+3 config
Cut
FiGc. 56. ™M
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B A transformation from config proofs into bint proofs

At first we remark that when a given proof net with conclusion I', we can construct a proof net with
boolzJ‘,F as shown in Figure Bll It is easy to extend the remark to the general bool¥ case for
k<2

Then based on the above remark, as a derived rule, we introduce bool¥-axiom as shown in Figure B3
in order to keep figures as simple as possible.

(PL) (=pL)
1&1 X
1& 1—|o 1t
bool 2+ A

F1G. 57. bool?-weakening

F1c. 58. bool¥-axiom

In order to translate config proofs into bint proofs, we introduce an immediate type tint =g.¢
VXX —0X)—-ol(X ©0X)—-ol(X o0X)—o3$(X —oX).
Figure B shows our translator from config proofs into bint proofs. When a given config proof, at
first we duplicate the proof by using 2-contraction-config proof net. A construction of 2-contraction-config
proof net is not so easy as that of 2-contraction for bint. Appendix[is devoted to the construction.

After that, each duplicated config proof net is projected into a tint proof by using prji or prj2
shown in Figure The purpose of prj1 is to extract the left parts of configurations of Turing
machines and similarly that of prj2 is to extract the right parts.
Proof net prj1 has proof net prjisub shown in Figure Bl as a sub-proof net and prj2 has prj2sub
shown in Figure B2 Proof net prj1 also has proof nets tsuc0*, tsucl®, and tsuc** as sub-proof nets
and prj2 has tsucO, tsucl, and tsuc*. Figure and Figure show proof net tsucO and tsucO0”
respectively. We omit tsucl, tsuc*, tsucl®, and tsucx’, since the constructions of these proof nets
are easy exercise. Note that in order to recover tapes correctly we need to reverse the left parts of
tapes. Next we concatenate obtained two tint proofs by tadd of Figure
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tint+ @
(-PL) |

tint'® L tintte
~ empty | (pL) ~_ —
P tint ((tint & 1)&(tint & 1))* @
empty | () N . . —
tint tint & 1 (((tint & 1)®(tint & 1))®bool ™)

tin\Et 1 (tint & 1)=o(((tint & 1 @(tint & 1))@ bool )"
((tint & D=0 (tint & 1)-o(((tint & V@ (tint & 1))@bool<))* tint

L $((tint & 1)-o(tint & 1)-o((tint & Ve(tint & 1))@bool<)*  stint _—

Fic. 61. prjlsub

@ tirltl
(-pL) it & J.|
nt~® 1 tint @
_ empty | (p.) ~_ —
Cou) tint ((tint & D&(tint & 1))* @
empty | (py) L
tint )

tint & 1 (((tint & 1)@(tint & 1))®bool
\_/,/__/
timﬁé 1 (tint & D=o(((tint & Ve (tint & 1))@bool)*

((tint&\lf-O(tint & 1)-o(((tint & De(tint & 1))®@bool“)* tint

L $((tint & 1)-o(tint & 1)-o(((tint & V@ (tint & 1))@bool )" stint _

Fic. 62. prj2sub

We distinguish the two normal proofs of bool?. One is called Pig;. and the other Pi. (see
Figure[BOl). Next we apply distill of Figure [E7 to the obtained tint proof. The construction of the
proof net distill is inspired by that of strip term in [MOQO0]. The intention of the distill proof
net is to keep occurrences of 0 and 1 until the first * occurrence is reached. After that, the rest are
discarded. Figure B8 shows three sub-proof nets distill_step_X (X=1,2, and *) of the distill proof
net. Moreover, two sub-proof nets distill_step_sub_X; and distill_step_sub_Xg of distill_step_X
have the forms of Figure [fd or Figure Table [ shows the correspondence.

Figure [[J] shows tint2bint proof. The intention is to remove *-entry.

D=L D=R
distill _step_sub_join distill_step_sub_discard
distill_step_sub_join distill_step_sub_discard
distill _step_sub_discard | distill_step_sub_discard

b e 1
HLE

TABLE 1. distill_step_sub Xp
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F1G. 63. tsucO

| \_/ L \/ \_/A

HA-0A) 1(A10A)  1(A0A) qaloa) AA-0A) AA-0A) L $(A-0A) AA-0A)" $(A-0A)

1(A-0A)™

!(A—OA)—O!(A_O A)_O$(A_0A)l 1(A-0 A)_O!(A_O A)_0$(A_0A)
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FiG. 64. tsucO*

C Contraction on config

In this section we give how to construct 2-contraction-config proof net. In config2bint of Ap-

pendix [Bl we do not need the bookX-part of a given config proof. Hence in the construction of

2-contraction-config proof net we could discard bookX-parts. But we give a general construction
that duplicates book®-parts here. Figure [[ shows 2-contraction-config proof net. In this proof
net,

1. when given a config proof net, pre_config dup of Figure outputs a quartet of config proof
nets, where two config proofs are the same and only keep the left part and bookX of the input,
and the rest, which are two config proofs, are also the same and only keep the right part and
bookX of the input;

2. each configadd of Figure concatenate two config proof nets in the quartet.

Type dconﬁglz‘ of proof net pre_config_dup is defined as follows:

k

configk =4.; (config ® config)&(- - - &((config ® config)&(config ® config)) - - -)

dconﬁglzc =def conﬁglzc [} conﬁglzc

In pre_config_dup, at first, we make 4k config proofs. Then according to the bookX-value of the
input config proof, we choose 4 config proofs. That is why we use k-ary tuples by &-connectives
in conﬁg]‘z‘. In addition we need to distinguish the left part and the right part of the input config
proof. That is why we use one @-connective in dconﬁglz‘.
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Fic. 65. tadd
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1 L
A A
[ [
Atoat Ateat

ARG ARRAA

FiG. 66. Pigg and Pi,

Figure [ shows sub-proof net pre_config dup main of pre_config dup. Note that as shown in
Figure [[@ we can duplicate book? proof without using $ (of course we can easily extend this

construction to the bool¥ case).

Proof nets dconfig _sucX (where X = 1,2, and *) shown in Figure [[7] occur in

pre_config dup_main as sub-proof nets. Figure and Figure show proof nets sucOL and sucOR.
We omit suclL, suclR, sucxL and sucx*R since the constructions of these proof nets are easy exercise.

Received 07/10/2003
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